User talk:Nyet: Difference between revisions

From S4wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 3: Line 3:
\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
</math>

<math>
D_F(f_i) = L_F(D_0+S_0(c/f_i-\lambda_{ref}))
</math>

<math>
e^{i\pi} = -1
</math>
</math>

Latest revision as of 16:28, 29 September 2020