User talk:Nyet: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = |
\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = |
||
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} |
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} |
||
</math> |
</math> |
Revision as of 00:50, 17 November 2016